Reinforced Concrete I. / Beton Armat I.

Course Notes / Note de curs

Dr. NAGY-GYÖRGY Tamás Professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office:

A219

2.1 CONCRETE STRUCTURE

2.2 TYPES OF CONCERTE

2.3 CONCRETE STRENGTH

2.4 CONCRETE DEFORMATIONS

Concrete is a composite material composed of:

- aggregates

→ natural → Gravel pit or quarries
 → artificial → slag / expanded clay/
 → recycled

Gravel pit (balastieră)

Obs:

- Higher aggregates provides density and strength

- The fine part (sand) fill the gaps between large aggregates and increase the cement binder's strength

Quarry (carieră)

Politehnica 3

Gravel pit aggregates

quarry aggregates

Dr.ing. Nagy-György T. ©

' Universitatea Politehnica Z Timisoara

Concrete is a composite material composed of:

- aggregates

→ natural → Gravel pit or quarries
→ artificial → slag / expanded clay/ ...

 \rightarrow recycled

slag / expanded clay

Concrete is a composite material composed of:

- aggregates

ightarrow natural ightarrow Gravel pit or quarries

 \rightarrow artificial \rightarrow slag / expanded clay/ ...

 \rightarrow recycled

"In Japan, recycling rate of concrete debris was 96% in 2000..." Koji SAKAI, Prof. of Kagawa University, Japan 2. CONCRETE/ BETONUL

Dr.ing. Nagy-György T. ©

6

Universitatea Politehnica Timisoara

Concrete is a composite material composed of:

- cement → CEM I	Portland cement (ordinary)
\rightarrow CEM II	Portland composite cement
\rightarrow CEM III	Blast furnace slag cement
\rightarrow CEM IV	Pozzolanic cement
\rightarrow CEM V	Composite cement
\rightarrow H	hydrotechnical cement
\rightarrow SR	sulfate resistant cement
\rightarrow II A	white cement with additives
\rightarrow PR/PG/PV	cement with red/yellow/green color

Dr.ing. Nagy-György T. ©

Reinforced Concrete I. / Beton Armat I.

Structure of Concrete / Structura betonului

Concrete is a composite material composed of:

- water
- chemical admixtures (aditivi)
 - \rightarrow Water-reducing admixtures (strength)
 - → Retarding admixtures (summer)
 - \rightarrow Accelerating admixtures (winter)
 - \rightarrow Superplasticizers (consistency)
 - ightarrow Corrosion-inhibiting admixtures
 - ightarrow for impermeability
 - \rightarrow air-entraining (microporosity)

Dr.ing. Nagy-György T. ©

Voids <a>A absorb the pressure created by the expansion of the freezing water.

Concrete is a composite material composed of:

- mineral admixtures (adaosuri)
 - → Granulated blast furnace slag
 - \rightarrow Natural pozzolana
 - \rightarrow Natural calcined pozzolana
 - \rightarrow Siliceous fly ash
 - \rightarrow Calcareous fly ash
 - \rightarrow Burnt shale
 - \rightarrow Limestone
 - \rightarrow Silica fume

S

Ρ

Q

V

W

Т

D

L, LL

Dr.ing. Nagy-György T. ©

Universitatea Politebnica 9 Timisoara Reinforced Concrete I. / Beton Armat I.

Structure of Concrete / Structura betonului

- \rightarrow Ground granulated blast furnace slag
- \rightarrow Rice husk ash (RHA)
- \rightarrow Metakaolin

2. CONCRETE/ BETONUL

Structure of Concrete / Structura betonului

Cement paste

(Weiss J – Purdue University)

Concrete = biphasic material composed of aggregates embedded in the cement matrix:

- non-homogeneous
- anisotropic
- elasto-plastic material

- Plasticity: due to micro-cracking phenomenon
- Viscosity: due to uncured cement paste.

Cement paste = pseudo-solid material, composed of:

- 1. Hardened cement crystals
- 2. Cement gels
- 3. Chemically and physically bound water, free water
- 4. Capillary pores and gel pores that communicate between themselves and with the outside

Strain

- → solid phase → viscous phase
- ightarrow liquid phase

ightarrow gas phase

Evolution of the concrete structure in time

Change the volume phases of cement stone

2.1 CONCRETE STRUCTURE

2.2 TYPES OF CONCERTE

2.3 CONCRETE STRENGTH

2.4 CONCRETE DEFORMATIONS

Types of Concrete / Tipuri de beton

- FRESH CONCRETE
- HARDENED CONCRETE
- PLAIN CONCRETE
- REINFORCED CONCRETE
- PRESTRESSED CONCRETE

 ρ = 2300 ... 2400 kg/m³ ρ = 2000 ... 2600 kg/m³

Types of Concrete / Tipuri de beton

SPECIAL CONCRETE

- LIGHT-WEIGHT CONCRETE (LC) $\rho < 2000 \text{ kg/m}^3$
 - CONCRETE WITH LIGHT AGGREGATES
 - CELLULAR CONCRETE (BCA)
- HEAVYWEIGHT CONCRETE

 $\rho > 2600 \text{ kg/m}^3$

- HIGH STRENGTH CONCRETE
- HIGH PERFORMANCE CONCRETE (HPC)
- POLYMER-MODIFIED CONCRETE
- FIBER REINFORCED CONCRETE (FRC)
- SELF COMPACTING CONCRETE (SCC)
- SHOTCRETE

2.1 CONCRETE STRUCTURE

2.2 TYPES OF CONCERTE

2.3 CONCRETE STRENGTH

2.4 CONCRETE DEFORMATIONS

Failure of concrete under uniaxial compression → gradualness

Failure of concrete under uniaxial compression → gradualness

- 1. Elastic behavior: hardening \rightarrow compressive stress between 0 f₀ (f₀ = micro-cracking strength)
- 2. Elastic-plastic behavior : **micro-cracking** \rightarrow compressive stress between f₀ 0.9 f_c
- 3. Failure: cracking-failure \rightarrow compression stress > 0.9 f_c
- f_c = compressive strength of conceret subjected to short term static loads

Failure of plain concrete has a brittle behavior, because occurs at very small deformations.

Dr.ing. Nagy-György T. ©

Failure of concrete under uniaxial tension

\rightarrow strongly influenced by discontinuities

The behavior of concrete cylinder subjected to centric compression

The behavior of concrete cylinder subjected to centric compression

The behavior of concrete cylinder subjected to centric compression

Micro-cracks in cement paste

The behavior of concrete cylinder subjected to centric compression

The behavior of concrete cylinder subjected to centric compression

Dr.ing. Nagy-György T. ©

Universitatea Politebnica 25 Timisoara

Failure of a cube specimen with friction \rightarrow biaxial stresses, due to friction between the steel plates and

concrete specimen

- τ shear stress \rightarrow prevents transversal deformations
- σ normal stress
- σ_1 principal tensile stress
- σ_2 principal compression stress

The behavior of confined concrete specimen subjected to centric compression

Confined concrete
SPIRAL REINFORCEMENT

Internal forces

versitatea itehnica 27 iisoara

Universitatea Politehnica Timisoara

28

The behavior of confined concrete specimen subjected to centric compression

Dr.ing. Nagy-György T. ©

Confinement of concrete

= increasing compressive strength of concrete by creating triaxial stress

Reinforced Concrete I. / Beton Armat I.

2. CONCRETE/ BETONUL

Concrete strength / Rezistențele betonului

Confinement of concrete

= increasing compressive strength of concrete by creating triaxial stress

SPIRAL REINFORCEMENT

Dr.ing. Nagy-György T. ©

Conclusions regarding of concrete failure:

- *concrete failure* occurs due to *cohesion loss*, indifferent of the stress type, when specific tensile deformations reach maximum (ultimate);

- *concrete failure* has a *gradually character* due to the accumulation of a critical amount of degradation, in the form of micro-cracks, and then cracks;

- it can be considered an *elastic behavior* to the value of the stress which not exceeding the *micro-cracking strength* (f_0);

- *plastic behavior* is due to appearance and development of irreversible deformation through *micro-cracking of concrete*;

- failure of plain concrete has *brittle character*, as occurs at very small deformations.

Usual tests to determine concrete characteristics

Strength	Test type	Specimen	Denomination	Symbol
Compression strength	Uniaxial compression	Cylinder	Strength on cylinder (concrete class)	f _{cil}
		Cube	Cubic strength	f _{cub}
		Prism	Prismatic strength	f _{pr}
Tensile strength	Uniaxial tension	Prism / Cylinder	Tensile strength	\mathbf{f}_{ct}
	Splitting tensile	Cylinder / Cube	Splitting tensile strength	f _{ct sp}
	Bending tension	Bended prism	Bending tensile strength	f _{ct fl}

Factors affecting concrete strength

1. Quality of raw materials

Cement	influencing the strength only at young ages
Aggregates	 strength dimension form surface texture mineralogical nature quality (density, purity, etc)
Ара	"the water should be fit for drinking"

Factors affecting concrete strength

2. Proportion of constituents

W/C ratio \searrow \Rightarrow $f_c \nearrow$ Trained air \nearrow \Rightarrow f_c Cement dosage \checkmark \Rightarrow f_c

Coarse / fine aggregate ratio \Rightarrow workability \Rightarrow strength (granulometry)

Factors affecting concrete strength

3. Casting conditions

Vibration	\Rightarrow	Compaction	
Compaction	Z	\Rightarrow	$f_c \nearrow$
Homogeneity	Z	\Rightarrow	f _c ⊅
Segregation/Honeycombing	7	\Rightarrow	$f_c ightarrow$

Concrete strength / Rezistențele betonului

Factors affecting concrete strength

4. Working/storage conditions

Temperature	7	\Rightarrow	promotes hydration
Humidity	7	\Rightarrow	promotes hydration

Age = degree of hydration

Concrete strength / Rezistențele betonului

Factors affecting concrete strength

5. Testing conditions

Specimen dimension \nearrow \Rightarrow $f_c \searrow$

Specimen form

$$f_{c,cube} > f_{c,cylinder}$$

 $f_{c,cube} > f_{c,prism}$

Specimen humidity

Loading speed

 \nearrow f_c

 $\nearrow \Rightarrow f_c \nearrow$

2.1 CONCRETE STRUCTURE

2.2 TYPES OF CONCERTE

2.3 CONCRETE STRENGTH

2.4 CONCRETE DEFORMATIONS

Causes of deformations:

- Intrinsic (own): shrinkage
 - swelling

- Exterior:

- direct loads
- induced displacements
- variation of temperatures
- et cetera

Elastic deformation: due to the solid phase (aggregates, crystals formed by the cement curing)

- could be linear or non-linear

- after termination of the action, theoretically, the body returns instantaneously to its original form

Plastic deformation: occurs due to structural discontinuities (especially micro-cracks) which compromise the adhesion of aggregate-to-cement stone;

- appears at a certain level of stress

- increases as long as loading increases, and after the complete unloading, remaining irreversible deformation

Viscous (rheological) deformation: occurs due to the gels, called creep

- viscous deformation develops in time and is partially reversible after the termination of the action.

c) Non-linear - Viscous

Volume of concrete stored in a dry environment decrease \rightarrow shrinkage

Volume of concrete stored in water increase \rightarrow swelling

E_{cs}

Volume of concrete stored in a dry environment decrease \rightarrow shrinkage Volume of concrete stored in water increase \rightarrow swelling

Partial reversibility of shrinkage!!!

Reinforced Concrete I. / Beton Armat I.

2. CONCRETE/ BETONUL

Concrete deformations / Deformațiile betonului

Theory \rightarrow concrete deformations is due to water migration in concrete mass

The total shrinkage strain is composed of two components, the drying shrinkage strain and the autogenous shrinkage strain.

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

The drying shrinkage strain develops slowly, since it is a function of the migration of the water through the hardened concrete.

 \mathcal{E}_{cd} (drying shrinkage)

The autogenous shrinkage strain develops during hardening of the concrete: the major part therefore develops in the early days after casting. Autogenous shrinkage is a linear function of the concrete strength.

 \mathcal{E}_{Ca} (autogenous shrinkage)

The irreversible component of shrinkage \rightarrow due to aging of gels, manifested by progressive reduction of their volume and increased volume of crystals

The reversible component of shrinkage \rightarrow decreases over time and is due to:

- the capillary action, independent from concrete age
- the thickness of the film of water adsorbed on the surface of gels, dependent on concrete age

Factors influencing concrete shrinkage and swelling

- Humidity and temperature

$$\mathsf{RH} \, \forall + \, \mathsf{Temp} \, \nearrow \qquad \Rightarrow \qquad \mathbf{\epsilon}_{cs} \, \nearrow$$

- Volume of the gels increases with cement content

$$V_{gel} \nearrow \Rightarrow \epsilon_{cs} \nearrow$$

- Aggregates: influencing the gravel-to-sand ratio

$$\epsilon_{cs, cement} > \epsilon_{cs, mortar} > \epsilon_{cs, concrete}$$

Factors influencing concrete shrinkage and swelling

- Concrete superplasticizer → reduce W/C without decrease of workability
- Increased concrete compaction \rightarrow higher concrete strength \rightarrow smaller deformations from shrinkage
- Possibility of water evaporation: the contraction is greater as the surface area given by the ratio of the exposed surface and the element volume is greater.

Shrinkage of reinforced concrete

Experimentally: the value of **reinforced concrete shrinkage** it is **less than** of plain concrete, so for a higher reinforcement ratio lower shrinkage will result.

Explanation: **bond** between concrete and reinforcement **reduces the tendency of shrinkage** of the concrete, reinforcement opposing to shrinkage.

→ In **reinforcement** arise **compression** stresses, while in **concrete tensile** stresses

Reinforced Concrete I. / Beton Armat I.

Concrete deformations / Deformațiile betonului

- ε_{cs} = total shrinkage strain of plain concrete
- ε_{sc} = compression strain in reinforcement (= shrinkage of RC)
- ε_{ct} = tensile strain in concrete, caused by the presence of reinforcement

Dr.ing. Nagy-György T. ©

Shrinkage of reinforced concrete

Compression stress in reinforcement:

 $\sigma_s = \varepsilon_{sc} \cdot E_s$

Corresponding compression force in reinforcement:

 $F_s = A_s \cdot \sigma_s$

Tensile stress in concrete:

 $\sigma_c = \varepsilon_{ct} \cdot E_c = (\varepsilon_{cs} - \varepsilon_{sc}) \cdot E_c$

Corresponding tensile force in concrete:

$$F_c = A_c \cdot \sigma_c$$

Shrinkage of reinforced concrete

Equilibrium condition in longitudinal direction: $F_s = F_c$

$$A_{s} \cdot \varepsilon_{sc} \cdot E_{s} = A_{c} \cdot (\varepsilon_{cs} - \varepsilon_{sc}) \cdot E_{c} / A_{c} \cdot E_{c} / A_{c} \cdot E_{c} / A_{c} \cdot E_{c}$$

Where

$$\rho = \frac{A_s}{A_c}$$
 - reinforcement coefficient

$$n = \frac{E_s}{E_c}$$
 - coefficient of equivalence

(= how many times is stiffer the steel then the concrete)

Shrinkage of reinforced concrete

$$\rightarrow \qquad \rho \cdot \varepsilon_{sc} \cdot n = \varepsilon_{cs} - \varepsilon_{sc} \qquad \rightarrow \qquad \varepsilon_{sc} = \frac{\varepsilon_{cs}}{1 + \rho \cdot n}$$

$$\sigma_s = \frac{\varepsilon_{cs}}{1 + \rho \cdot n} \cdot E_s \quad \rightarrow \text{ compression}$$

To determine the stress in concrete:

 $F_s = F_c \rightarrow$

$$\Rightarrow \quad A_c \cdot \sigma_s = A_c \cdot \sigma_c \qquad /A_c \qquad \Rightarrow$$

$$\Rightarrow \qquad \sigma_c = \frac{A_s}{A_c} \cdot \sigma_s = \rho \cdot \sigma_s = \rho \cdot \frac{\varepsilon_{cs}}{1 + \rho \cdot n} \cdot E_s = \frac{\varepsilon_{cs}}{\frac{1}{\rho} + n} \cdot E_s$$

Dr.ing. Nagy-György T. ©

Shrinkage of reinforced concrete < Shrinkage of plain concrete

Considering

$$\rho(\%) \nearrow \implies \varepsilon_{sc} \checkmark$$

$$\rho_1 < \rho_2 < \rho_3$$
(for example $\rho_1 = 1\%$; $\rho_2 = 2\%$; $\rho_3 = 3\%$)

'Universitatea Politebnica 55 Timisoara

Shrinkage of reinforced concrete

In statically indeterminate structures shrinkage introduce stresses.

These stresses could be assimilated with a variation of temperature (approximatively 15°C)

Concrete shrinkage in EN 1992-1-1:2004 (EC2)

 $\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

where

 \mathcal{E}_{cd}

 ε_{ca}

- ε_{cs} total shrinkage strain
 - drying shrinkage strain
 - autogenous shrinkage strain

Dr.ing. Nagy-György T. ©

Politeknica 57

Concrete shrinkage in EN 1992-1-1:2004 (EC2)

f _{ck} /f _{ck,cube}	Relative Humidity (in %)					
(MPa)	20	40	60	80	90	100
20/25	0.62	0.58	0.49	0.30	0.17	0.00
40/50	0.48	0.46	0.38	0.24	0.13	0.00
60/75	0.38	0.36	0.30	0.19	0.10	0.00
80/95	0.30	0.28	0.24	0.15	0.08	0.00
90/105	0.27	0.25	0.21	0.13	0.07	0.00

Table 3.2 Nominal unrestrained drying shrinkage values $\mathcal{E}_{cd,0}$ (in $^0/_{00}$) for concrete with cement CEM Class N

h_0	k _h
100	1.0
200	0.85
300	0.75
≥ 500	0.70

$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$

 $\varepsilon_{cs,\infty} = k_h \cdot \varepsilon_{cd,0}$

 k_h = coefficient depending on the h_0 $h_0 = 2A_c/u$ (notional size of the cross-section) A_c = concrete cross-sectional area

u = perimeter of that part of the cross section which is exposed to drying

$$\varepsilon_{ca}(\infty) = 2,5(f_{ck} - 10) \cdot 10^{-6}$$

 \rightarrow Creep of the concrete depend on the **ambient humidity**, the **dimensions** of the element and the **composition of the concrete +** the **maturity** of the concrete when the load is first applied and depends on the **duration** and **magnitude** of the loading.

Dr.ing. Nagy-György T. ©

Concrete shrinkage in EN 1992-1-1:2004 (EC2)

$$\varepsilon_{cs} = \varepsilon_{cd} + \varepsilon_{ca}$$

$$\varepsilon_{cd}(t) = \beta_{ds}(t, t_s) \cdot k_h \cdot \varepsilon_{cd,0}$$

 \rightarrow development of the drying shrinkage strain in time

$$\varepsilon_{ca}(t) = \beta_{as}(t) \cdot \varepsilon_{ca}(\infty)$$

 \rightarrow autogenous shrinkage strain in time

→ Creep of the concrete depend on the **ambient humidity**, the **dimensions** of the element and the **composition of the concrete +** the **maturity** of the concrete when the load is first applied and depends on the **duration** and **magnitude** of the loading.

Dr.ing. Nagy-György T. ©

Faculty of Civil Engineering

Politehnica 59 Timisoara

Deformations of concrete from temperature variation

The effect of temperature variation on structures can be assimilated with imposed strains.

Temperature variations considered are from:

- environment
- climate
- technology

$$\pm \Delta l = l \cdot \varepsilon_{\Delta t} = l \cdot \Delta t \cdot \alpha$$

where

- l
- Δt
- $\alpha = 10 \cdot 10^{-6} / ^{\circ}C$

- initial element length
- temperature gradient, in °C
- linear coefficient of thermal expansion of concrete

Deformations of concrete under short term static loads

Characteristic curve of concrete subjected to short term axial load

Deformations of concrete under short term static load

Influence of the concrete quality on the characteristic curve shape

→ Deformation corresponding to compressive strength of concrete is practically the same regardless of the quality of concrete

Deformations of concrete under short term static load

Influence of the concrete quality on the characteristic curve shape

ightarrow Ultimate strains decreases when the concrete class increase

Deformations of concrete under short term static load

Influence of the concrete quality on the characteristic curve shape

 \rightarrow Modulus of elasticity increases with the concrete strength

Deformations of concrete under short term static load

Influence of the concrete quality on the characteristic curve shape

→ curve shape depends also on the loading speed → concrete strength increases and deformations decreases as the load is applied with higher speed

Deformations of concrete under short term static load

The influence of the confinement effect on ultimate compressive strain of concrete

Deformations of concrete under short term static load

The modulus of elasticity

$$E_c = tg\alpha = \frac{\sigma_c}{\varepsilon_e} \qquad (f_c \nearrow \Rightarrow E_c \nearrow)$$

Transverse modulus of elasticity

$$G_c = \frac{E_c}{2(1+\nu)} \approx 0.4E_c$$

$$\nu = 0.2 - \text{coef. Poisson}$$

Deformations of concrete under short term static load

Secant modulus

Secant modulus

$$E_{cS} = tg\beta = \frac{\sigma_c}{\varepsilon_c} = \frac{\sigma_c}{\varepsilon_e + \varepsilon_p} = \frac{\sigma_c}{1 + \varepsilon_p/\varepsilon_c}$$

Fangent modulus
Tension

$$E_{cT} = tg\gamma = \frac{d\sigma_c}{d\varepsilon_e}$$

εc

 $\epsilon_{\rm cu}$

Deformations of concrete under <u>long term static load</u> Creep – Time dependent deformation

- $\varepsilon_{cc,t} = \phi(t, t_0) \varepsilon_e$
- $\phi(t, t_0)$
- $E_{c,eff} = \frac{E_{cm}}{1 + \varphi(\infty, t_0)}$

- creep deformation at a time t
- creep coefficient at a time t
- effective concrete modulus

Deformations of concrete under <u>long term static load</u> Creep – Time dependent deformation

Reinforced Concrete I. / Beton Armat I.

Concrete deformations / Deformațiile betonului

Deformations of concrete under <u>long term static load</u> Creep – Time dependent deformation

Deformations of concrete under <u>long term static load</u> Creep – Time dependent deformation

- Creep and shrinkage in compressed elements acting in the same direction

$$\sigma_{s} \nearrow \rightarrow \sigma_{c} \lor$$

- In the case of **tension** elements or with tension zone the action of creep is favorable and acțiunea curgerii lente este favorabilă and reduces the risk of cracking

- Transversal reinforcement does not influence the creep, because it has linear character

- Creep has significant influence in case of deflection and buckling

$c_{f_{ck}}/f_{ck,cube}$

Concrete deformations/ Deformațiile betonului

Deformations of concrete under <u>long term static load</u> Creep in SR EN 1991-1-1

- Choose of environmental condition (RH=50% inside; RH=80% outside)

- Choose of cement type (N, R, S)

 $h_0 = 2A_c/u$ - Choose of concrete class - compute h₀ coefficient

→ Creep of the concrete depend on the **ambient humidity**, the **dimensions** of the element and the **composition of the concrete +** the **maturity** of the concrete when the load is first applied and depends on the **duration** and **magnitude** of the loading.

Dr.ing. Nagy-György T. ©

Facultatea de Construcții

Vniversitatea Politeknica 73

Deformations of concrete under <u>long term static load</u> Creep in SR EN 1991-1-1

→ Creep of the concrete depend on the **ambient humidity**, the **dimensions** of the element and the **composition of the concrete +** the **maturity** of the concrete when the load is first applied and depends on the **duration** and **magnitude** of the loading.

Dr.ing. Nagy-György T. ©

Vniversitatea Politehnica 74 Timisoara

Time dependent deformations – The total deformation of concrete

Time dependent deformations – Effect of unloading on creep

Universitatea Politeknica 78

Time dependent deformations – Effect of unloading on creep

Dr.ing. Nagy-György T. 💿

Deformations of concrete under repeated dynamic loads

 ε_r = remanent strain (irreversible)

Reinforced Concrete I. / Beton Armat I.

2. CONCRETE/ BETONUL

Reinforced Concrete / Betonul armat

Dr. NAGY-GYÖRGY Tamás Associate Professor

E-mail: tamas.nagy-gyorgy@upt.ro

Tel: +40 256 403 935

Web: http://www.ct.upt.ro/users/TamasNagyGyorgy/index.htm

Office: A219

Thank you for your attention!

Dr.ing. Nagy-György T. ©

Universitatea Politehnica 87 Timisoara